Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2306.10484v2

ABSTRACT

Challenges drive the state-of-the-art of automated medical image analysis. The quantity of public training data that they provide can limit the performance of their solutions. Public access to the training methodology for these solutions remains absent. This study implements the Type Three (T3) challenge format, which allows for training solutions on private data and guarantees reusable training methodologies. With T3, challenge organizers train a codebase provided by the participants on sequestered training data. T3 was implemented in the STOIC2021 challenge, with the goal of predicting from a computed tomography (CT) scan whether subjects had a severe COVID-19 infection, defined as intubation or death within one month. STOIC2021 consisted of a Qualification phase, where participants developed challenge solutions using 2000 publicly available CT scans, and a Final phase, where participants submitted their training methodologies with which solutions were trained on CT scans of 9724 subjects. The organizers successfully trained six of the eight Final phase submissions. The submitted codebases for training and running inference were released publicly. The winning solution obtained an area under the receiver operating characteristic curve for discerning between severe and non-severe COVID-19 of 0.815. The Final phase solutions of all finalists improved upon their Qualification phase solutions.HSUXJM-TNZF9CHSUXJM-TNZF9C


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.17.20069187

ABSTRACT

Improving screening, discovering therapies, developing a vaccine and performing staging and prognosis are decisive steps in addressing the COVID-19 pandemic. Staging and prognosis are especially crucial for organizational anticipation (intensive-care bed availability, patient management planning) and accelerating drug development; through rapid, reproducible and quantified response-to-treatment assessment. In this letter, we report on an artificial intelligence solution for performing automatic staging and prognosis based on imaging, clinical, comorbidities and biological data. This approach relies on automatic computed tomography (CT)-based disease quantification using deep learning, robust data-driven identification of physiologically-inspired COVID-19 holistic patient profiling, and strong, reproducible staging/outcome prediction with good generalization properties using an ensemble of consensus methods. Highly promising results on multiple independent external evaluation cohorts along with comparisons with expert human readers demonstrate the potentials of our approach. The developed solution offers perspectives for optimal patient management, given the shortage of intensive care beds and ventilators1, 2, along with means to assess patient response to treatment.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.12852v1

ABSTRACT

Chest computed tomography (CT) is widely used for the management of Coronavirus disease 2019 (COVID-19) pneumonia because of its availability and rapidity. The standard of reference for confirming COVID-19 relies on microbiological tests but these tests might not be available in an emergency setting and their results are not immediately available, contrary to CT. In addition to its role for early diagnosis, CT has a prognostic role by allowing visually evaluating the extent of COVID-19 lung abnormalities. The objective of this study is to address prediction of short-term outcomes, especially need for mechanical ventilation. In this multi-centric study, we propose an end-to-end artificial intelligence solution for automatic quantification and prognosis assessment by combining automatic CT delineation of lung disease meeting performance of experts and data-driven identification of biomarkers for its prognosis. AI-driven combination of variables with CT-based biomarkers offers perspectives for optimal patient management given the shortage of intensive care beds and ventilators.


Subject(s)
COVID-19 , Pneumonia , Lung Diseases
SELECTION OF CITATIONS
SEARCH DETAIL